
CS 4530: Fundamentals of Software Engineering
Lesson 4.4: Pair Programming

Apurva Saini and Rob Simmons

Khoury College of Computer Sciences

1

© 2025 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/


Pair Programming is a Knowledge Sharing 
Activity

• Two programmers work together at one computer, 
one “driving,” one “navigating”

• Survey of professional programmers (2001):
• 90% “enjoyed collaborative programming more than 

solo programming”

• 95% were “more confident in their solutions” when pair 
programmed

• Provides long-term benefits: reduces defects by 15%, 
code size by 15%

• Increases costs by 15% to 100% compared to single 
developer on the task

Cockburn and Williams. The Costs and Benefits of Pair Programming, (In: Extreme Programming Explained 2001)



Roles in Pair Programming

• Driver

• Types the code

• Focused on immediate task

• Navigator

• Reviews each line of code

• Spots errors and suggests improvements

• How does it help:

• Improves code quality

• Encourages knowledge sharing

• Reduces bugs early

• Improves team communication

3



When to use Pair Programming

• Complex problems: Two minds can break down and solve 
difficult logic more efficiently, catching edge cases early.

• Learning new technologies: One person may have 
experience, and the other can learn by doing and observing.

• Code reviews in real time: Pairing acts like a continuous 
code review, allowing for cleaner, more robust code from 
the start.

• Mentorship: Great for onboarding new team members—
pairing allows them to learn the system while actively 
contributing.

• Critical code paths: Important features (e.g., payment logic, 
auth systems) benefit from the extra scrutiny and 
collaboration.

4



Common Pair Programming Styles

• Ping Pong pairing: Switch roles with each tests

• Strong style pairing: Driver only writes code as directed by the 
navigator

• Tour Guide: One that is familiar with the code guides another

• When not to pair:

• Simple or repetitive tasks

• Tasks requiring long research or reading

• When you need deep focus

• How to pair effectively:

• Communicate clearly and frequently

• Take breaks

• Switch roles effectively (every 20-30 min)

• Use proper tools (Screen Share, live share, etc)
5



Pair Programming Improves Tool Diffusion

• Peer observation and recommendation shown to 
be more effective at discovering new tools than 
other knowledge sharing approaches

• Examples: Hot keys, especially for CLI; IDE tricks

• Most common in 2011 survey: “Open Type” feature 
in Eclipse, developer tools in web browser

“Peer interaction effectively, yet infrequently, enables programmers to discover new tools”, Emerson Murphy-Hill & Gail C. Murphy, CSCW 2011

https://dl.acm.org/doi/10.1145/1958824.1958888

	Slide 1: CS 4530: Fundamentals of Software Engineering Lesson 4.4: Pair Programming
	Slide 2: Pair Programming is a Knowledge Sharing Activity
	Slide 3: Roles in Pair Programming
	Slide 4: When to use Pair Programming
	Slide 5: Common Pair Programming Styles 
	Slide 6: Pair Programming Improves Tool Diffusion

